拇指小说网

手机浏览器扫描二维码访问

第94章格点型牛顿问题在567维空间统一的证明(第1页)

在继续谈了一会之后,周易便回到了寝室。

开普勒猜想的证明过程还没写完呢。

几百页的证明,前后的逻辑性,

每一个单词是否多余,数学定理定义叙述的精确与否,都要细细打磨。

这次院长找周易谈话主要的目的还是去哪里读研的问题。

有个好的导师,未来的学术生涯,可以减少很多的弯路。

其实周易倾向于去水木大学的原因,就是因为18年菲尔兹奖得主比尔卡尔在证明BAB猜想之中用到的归纳法互推6个辅助定理,

周易在开普勒猜想证明之中也用到了用数学归纳法互推辅助定理。

可以说有异曲同工之妙。

都是代数几何方向,共同语言与思维的碰撞必然是极高。

到时候在研究一些数论猜想的时候,说不定有关键性的启迪。

其次丘先生也在水木大学,杨先生也在水木大学,当世最顶级的数学家、物理学家都在这所大学,何必舍近求远呢。

不过确实时间还早,就算是今年跟着大四一起毕业,那也还有三个多月。

现在才三月中旬。

周易一边敲着键盘,一边思考,这篇论文涉及的东西太多了,不仅是开普勒猜想。

当初牛顿提及的一个问题,也可以被解决。

要是一股脑的全部放出去,有些不划算。

而且这篇论文的诞生,必将引起离散几何的革命,到时候,恐怕整个通信将会迎来一个巨大的发展。

应用到民生、军事、航空航天等多个地方。

奈何周易在信息学的分支太少,等级太低,根本无法应用。

周易此刻停下了键盘,开始思考,要不学学别人,先发一个‘格点型’牛顿问题在五维空间统一为40的证明。

何谓牛顿问题?

这得追溯到三百多年前。

1694年的一天,牛顿和数学家格雷戈里在剑桥大学三一学院讨论太阳系行星的有关问题时,话题就转到了一个球可以同时与多少个同样大小的球相切的问题。

他们共同认为,一个球同时与12个同样大小的球相切是没有争议的。

格雷戈里是一位牛顿学说的追随者,他崇敬牛顿,但是不盲从牛顿。

由于他的天赋能力,在几何直观能力表现得十分的强,

在瞬间就想到以正二十面体的十二个顶点为中心的球都可以与位于正二十面体中心的一个球同时相切,而且这些球之间还存在很多空隙,经过适当的移动,也许可能至少再放进一个球去与中心那个球相切。

不过,牛顿坚持认为,那个球是不可能放进去的。

到最后他们也都没有能够给出各自结论的数学证明。

这个看似比开普勒猜想简单得多的问题,实际上也成为一个长期未解决的数学难题,被称为牛顿问题。

所以开普勒猜想和牛顿问题之间的联系是密不可分的,从宏观上看,在球堆积密度最大的时候,而处于局部位置的每个球是否应该与尽可能多的球相切呢?

不过牛顿问题比起开普勒猜想要简单一些而已。

看似简单的初等初等立体几何问题,让不少民科带师们觉得我上我也行。

实际上,他们门槛都进不去。

后面经过几百年数学家们不断的开拓,才把牛顿问题转化为了‘格点型’牛顿问题。

在这个过程中,又开拓出了一门新的数学分支,几何数论,也叫数的几何。

所以周易准备分成三个部分发出论文,

热门小说推荐
权力巅峰:从城建办主任开始

权力巅峰:从城建办主任开始

官场是什么?官场是权力的游戏。官场远比江湖更为险恶。千帆竞渡百舸争流!跨过去那就是海阔任潮涌风劲好扬帆!官场的规矩是什么?正确就是官场的最大规矩!重活一世。刘项东洞悉一切。他不仅能正确,还会一直正确下去!重生是风自身为鹏大鹏一日同风起,这辈子,我刘项东要扶摇直上九万里!...

九份婚书:我的师父绝色倾城

九份婚书:我的师父绝色倾城

简介我叫江羽,本想一直留在山上陪着我的绝色师父,却被师父赶去祸害未婚妻了。而且多少?九份婚书!?...

误入官路

误入官路

周胜利大学毕业后,因接收单位人事处长的一次失误延误了时机,被分配到偏远乡镇农技站。他立志做一名助力农民群众致富的农业技术人员,却因为一系列的变故误打误撞进入了仕途,调岗离任,明升暗降,一路沉浮,直至权力巅峰...

极品对手

极品对手

他们都是草根出生,凭自己的努力走上仕途,但一个清廉,一个腐败,于是一见面就成了格格不入的对手...

步步升云

步步升云

要想从政呢,就要步步高,一步跟不上,步步跟不上,要有关键的人在关键的时刻替你说上关键的话,否则,这仕途也就猴拉稀了...

官道征途:从跟老婆离婚开始

官道征途:从跟老婆离婚开始

妻子背叛,对方是县里如日中天的副县长!一个离奇的梦境,让李胜平拥有了扭转局势的手段!即将被发配往全县最穷的乡镇!李胜平奋起反击!当他将对手踩在脚下的时候,这才发现,这一切不过只是冰山一角!斗争才刚刚开始!...

每日热搜小说推荐